

LA-UR-19-22638

Approved for public release; distribution is unlimited.

Title: High-Resolution 3D Acoustic Borehole Integrity Monitoring System

Author(s): Pantea, Cristian

Intended for: Report

Issued: 2019-04-02 (rev.1)

High-Resolution 3D Acoustic Borehole Integrity Monitoring System

Cristian Pantea – Los Alamos National Laboratory

NTERNAL USE ONLY – NOT APPROVED FOR PUBLIC RELEAS

March 25, 2019

Technical Objectives

- System development for borehole integrity
 - ° Physical process, improved methodology, technique or device.

-All of the above (Develop a high-resolution 3D imaging system for improved wellbore diagnostics and

integrity assessment)

- Expected outcomes and advancement of knowledge
 - —Extend applicability to:
 - casing-cement interface
 - cement-formation interface -
 - out in the formation —

Project Background/Methodology

- Previous supporting research
 - ° Project evolved from "Seedling" to "Sapling" to this project
- Current state-of-the-art
 - ° Either sonic probe (low resolution), or ultrasonic probe (low penetration)

Comparison of existing techniques and the present approach

• Project started:

· 2017

Method	Frequency (kHz)	Range (m)	Resolution (mm)
Sonic probe	0.3-8	15	~ 300
Present approach	10-150	~ 3	~ 5
Ultrasonic probe	>250	casing	4-5

Project Background/Methodology

Methodology

- Use simple low-frequency collimated source in conjunction with receiver array to collect data beyond casing
- Use advanced signal-processing techniques and data inversion to reconstruct images

o Investigate use of foamed cements viability (conventional methods have difficulty detecting foamed cement due to low

Technical Approach

Novel technique that fills technology gap

Method	Frequency (kHz)	Range (m)	Resolution (mm)
Sonic probe	0.3-8	15	~ 300
Present approach	10-150	~ 3	~ 5
Ultrasonic probe	>250	casing	4-5

1. Collimated beam for increased resolution

2. Low frequency for deeper penetration

Technical Approach

1. Use radial modes to generate Bessel-like acoustic beams

2. Laterally clamp transducers to alter boundary conditions

Normalized out-of-plane displacement on the surface of the disc for RM-3 for different lateral stiffness k (N/m3)

Technical Approach

- Include telemetry (i.e., details on how data is/will be transmitted)
 - o Data will be transmitted through existing wireline

Accomplishments to Date

- Performed a comprehensive literature/existing technology study for wellbore integrity monitoring tools
- Identified potential partner for further developing the proposed technique
- Refined hardware (ACCObeam Acoustic Collimated beam)
- Refined software for faster measurement and analysis
- Performed theoretical prediction on foamed cement Young's modulus with different hydration degrees
- Acquired data in granite with embedded defects (wall thinning, casing eccentricity, channeling, delamination)
- Pending data analysis for the above.
- Planning cementation of 4" casing in two samples of Mancos shale

<u>Accomplishments to Date</u>

- Appl. Phys. Lett., 2018, v. 113, issue 7, p. 071903
- Wave Motion, 2018, vol. 76, p. 19-27
- Appl. Phys. Lett., 2017, v. 110, issue 6, p. 064101
- Proceedings of SPIE, 2017, v. 10170, p. 1017024
- 1 manuscript in preparation (sandstone characterization)
- 1 conference paper–Rock Mechanics
- 1 conference paper submitted –Nondestructive Evaluation
- 1 patent application (Resonance-based Nonlinear Source)
- 1 patent application (Bessel-like Acoustic Source)
- 1 provisional patent (Imaging Technique with Lowfrequency Beam)

Lessons Learned

- Describe any challenges and issues that have presented themselves.
 - Research gaps/challenges.
 - -Engineering issues with hardware packaging for experiments in granite
 - o Unanticipated research difficulties.
 - -N/A
 - ° Technical disappointments.
 - -N/A
 - ° Changes that should be made next time.
 - -Closer interaction with technical members of the team

Solutions for Today Options for Tomorrow

For More Information, Contact NETL www.netl.doe.gov

